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Soils play an important role in mediating chemical weathering reactions and
carbon transfer from the land to the ocean. Proposals to increase the contri-
bution of alkalinity to the oceans through ‘enhanced weathering’ as a means
to help prevent climate change are gaining increasing attention. This would
augment the existing connection between the biogeochemical function of
soils and alkalinity levels in the ocean. The feasibility of enhanced weather-
ing depends on the combined influence of what minerals are added to soils,
the formation of secondary minerals in soils and the drainage regime, and
the partial pressure of respired CO, around the dissolving mineral. Increas-
ing the alkalinity levels in the ocean through enhanced weathering could
help to ameliorate the effects of ocean acidification in two ways. First,
enhanced weathering would slightly elevate the pH of drainage waters,
and the receiving coastal waters. The elevated pH would result in an
increase in carbonate mineral saturation states, and a partial reversal in
the effects of elevated CO,. Second, the increase in alkalinity would help
to replenish the ocean’s buffering capacity by maintaining the ‘Revelle
Factor’, making the oceans more resilient to further CO, emissions. How-
ever, there is limited research on the downstream and oceanic impacts of
enhanced weathering on which to base deployment decisions.

This article is part of the theme issue ‘The role of soils in delivering
Nature’s Contributions to People’.

1. Introduction

The Earth'’s climate is regulated by processes on the land and ocean. Soils play an
important role in both spheres as a medium for organic carbon accumulation and
turnover. Soils also facilitate mineral weathering, which removes CO, from the
atmosphere, converts it into bicarbonate ions, which contribute to the alkalinity of
the ocean. This relationship between terrestrial and oceanic processes is an impor-
tant feature in the natural carbon cycle [1], specifically as a feedback balancing
volcanic degassing and other natural CO, accumulation in the atmosphere. Weath-
ering will also consume all anthropogenic CO, emissions over 10°~10° years [2,3].

The role of soils is particularly relevant to ‘enhanced weathering’ proposals
that consider adding minerals to the land to help mitigate climate change [4,5].
Every year, the Earth’s rivers naturally add around 500 million tonnes of dis-
solved calcium to the oceans [6]. This calcium originates from the weathering
of carbonate or silicate minerals, which (along with other cations: Mg, Na
and K) also consumes CO; (e.g. equations (1.1) and (1.2)).

CaCOs(s) + COx(g) + H20p) — Caly) +2HCO; (1.1)
and
CaSiO3(S) + 2C02(g) + 3H20(1) — Ca%;;) + ZHCO;(aq) + H4Si04(aq) (12)

Equations (1.1) and (1.2) show the reaction of single minerals (calcite CaCO3
and wollastonite CaSiO3) with CO,, but typically a range of minerals in a rock
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weather to produce an array of dissolved species as well as
new mineral phases (including clay minerals and iron
oxides) but, as above, typically consume CO, [4]. Approxi-
mately 0.25 billion tonnes (Gt) of carbon (1 GtC=1 peta
gram C) may be removed from the atmosphere by natural
weathering of silicate minerals [7-9], and a similar amount
from carbonate weathering [10]. On geological timescales,
this removal is balanced with CO, emissions from volcanic
sources. Changes in this balance are fundamental in the
climate system, and the temperature dependence of weather-
ing rate provides a long-term negative feedback, stabilizing
global climate [11].

Soils play an important role as a medium in which weather-
ing reactions take place [12]. Mineral weathering is naturally
accelerated in soils through physical (freeze-thaw, wetting—
drying and anthropogenic activities [13]) and biochemical
(CO;, respiration, and proton/organic molecule exudation from
plant roots, microbes and fungal hyphae, [14,15]) processes.
Being composed mainly of secondary minerals (minerals that
form through environmental processes, see below, e.g. clays, car-
bonates and iron oxides/hydroxides), soils are also a product of
weathering, which may occlude fresh primary minerals in
underlying rock and reduce further mineral dissolution [16].
Soil is also a medium for the reverse reaction of equation (1.1),
in which “pedogenic’ carbonates are formed. The quantification
of the carbonate content of soil has typically been confined to
arid environments where it is the largest carbon pool [17].
Estimates suggest that 695-748 GtC are stored globally as pedo-
genic carbonate, in which the calcium is derived primarily from
remobilised lithogenic carbonate [18].

Here, the fundamental role that soils play in the terres-
trial-oceanic inorganic carbon cycle are explored, and how,
through the action of soils, enhanced weathering may help
to ameliorate ocean acidification.

The application of crushed carbonate minerals to soils is a
standard practice in agriculture (agricultural lime) to amend
soil porewater pH. It is likely that in excess of 100 Mt of agri-
cultural lime (CaCQO;) are applied globally (e.g. 20-30 Mt in
the US alone [19], although global figures are not readily
available). By mimicking natural weathering, but using simi-
lar processes and supply chains for agricultural lime, some
have suggested the intentional addition of silicate minerals
to the land surface may help to prevent climate change [20-
23], with the additional consequence of increasing ocean
alkalinity [24]. Enhanced weathering may be part of a portfo-
lio of approaches that intend to remove multiple GtCO, yr™'
from the atmosphere by 2100 [25,26]. For instance, a recent
study suggests that the application of crushed basalt to 35—
59% of cropland area in 12 countries could be sufficient to
remove 2 GtCO, yr~' by 2050 at a cost of $60-220 per tCO,
[5]. The technical challenges associated with enhanced weath-
ering are dominated by the need to crush rock to a small
particle size, such that the rate of mineral dissolution is suffi-
ciently rapid that a large proportion of the mineral dissolves
over only a few years. As such, the costs in Beerling et al. [5]
account for emissions produced by the supply chain. Below
we consider the properties of, and processes in, soils that
may control the function of enhanced weathering. Rather
than adding silicate minerals, it is theoretically possible to

add carbonate minerals to the land surface (e.g. expanding
the use of agricultural lime). However, as we discuss below,
such a proposal may be considerably limited in the CO,
removed per unit of land.

The inorganic components of soil are conceptually
divided into primary and secondary minerals. Primary min-
erals have not been significantly chemically altered since their
crystallization from molten material [27]. They are mainly sili-
cate minerals with varied bonding structure [28]. Other
common primary minerals in soils include oxides/hydroxides
of titanium/iron/manganese, carbonates, as well as non-crys-
talline inorganic materials such as volcanic glasses [29].
Primary minerals undergo various physical, chemical, bio-
chemical and human-induced weathering in soils. One of the
main weathering pathways is the reaction with natural aqu-
eous solutions, such as rainwater, where carbonic acid forms
by dissolution of atmospheric CO,. Carbonic acid reacts with
the surfaces of primary minerals causing them to dissolve.
On short timescales, weathering of carbonate minerals (e.g.
equation (1.1)) results in less net sequestration of CO, than
weathering of silicate minerals (e.g. equation (1.2)), and that,
over longer timescales (over hundreds of thousands to millions
of years), weathering of carbonates results in no net CO,
sequestration due to eventual re-precipitation of carbonates
in the ocean [4].

In soils, the CO, partial pressure may be between 10 to
100 times greater than that of the atmosphere due to plant
and microbial respiration, bringing it into the same range
as power station flue gas [30,31]. This elevated partial
pressure generates additional acidity, accelerating mineral
weathering. Moreover, weathering in soils is enhanced by
the release of organic acids from plant roots, e.g. malic and
acetic acid [32,33], microorganisms, e.g. fulvic, humic, pheno-
lic acids [34,35] and fungi, e.g. citric and oxalic acid [36,37]. In
addition, organic compounds can form complexes with the
cations in silicate minerals, facilitating breakdown as well
as altering the formed products [38]. Furthermore, earth-
worms, lauded by Aristotle as ‘the intestines of the earth’,
play a significant role in enhancing mineral degradation,
via organic acids, digestive enzymes and gut microbes
during ingestion as well as via burrow aeration and transport
processes [39,40].

Since most weathering occurs via contact between pri-
mary minerals and aqueous solutions, mineral solubility is
important. Generally, silicate minerals with less silica
polymerization, e.g. olivine, dissolve at faster rates than min-
erals with greater silica polymerization, e.g. quartz [41,42]
owing to the stronger Si-O bond compared to the M-O
bond (where M =Na, Mg or Ca, etc). The dissolution of car-
bonate minerals (equation (1.1)) is orders of magnitude fasted
than silicate minerals, and carbonate dissolution is congruent,
meaning the molar ratios of the dissolved elements in sol-
ution are similar to that of the solid. However, most
primary silicate minerals dissolve incongruently, which
means their more soluble components are released preferen-
tially [28]. For instance, when in contact with natural
waters, minerals tend to release monovalent cations (e.g.
Na*, K*), before divalent cations (Mg2+, Ca?"), before triva-
lent cations (Fe**, AL, according to the correlation
between the ease of hydrolysis and electrostatic valency of
the species [43].

In soils, the dissolved products of primary silicate mineral
weathering increase the availability of some limiting



nutrients such as Si, K and P [44]. These can boost plant pro-
ductivity and increase the size of the terrestrial carbon pool
[45]. This process is critical in natural soil formation [46].
Some of the dissolved products, namely bicarbonate HCO3,
are transported by rivers to the oceans, increasing its total
alkalinity, and counteracting ocean acidification (see below
[47]). Furthermore, dissolved Si, P and Fe could stimulate bio-
logical productivity in oceans, removing additional CO, from
the atmosphere as organic carbon [48-50].

Alongside production of bioavailable dissolved products,
incongruent dissolution of some primary minerals also
produces solid residues, referred to as secondary minerals.
For example, during weathering, primary mineral feldspars,
MAISi3Og, hydrolyse, releasing soluble cations M* and
H4SiO4, and leaving behind the solid secondary (clay)
mineral kaolinite, Al;Si,Os5(OH), (e.g. equation (2.1)).
2KAISi3Og¢s) + 9H,0 + 2H(, 9
— AlSiHO5(OH)y() + 4H4SiO4aq) + 2K(+aq> (2.1)

Other common secondary minerals in soils include
oxides, e.g. Fe,O;, hydroxides, e.g. Al(OH)s;, carbonates,
e.g. CaCO;, and phosphates, e.g. Cas(PO,)s(E Cl, OH).HO. Sec-
ondary minerals may also precipitate directly from aqueous
solution rather than by continuous modification of a primary
mineral [51]. The compositions, structures and quantities of
these secondary minerals together with organic molecules deter-
mine a soils” cation exchange capacity (CEC) and thus its ability
to hold nutrients and buffer against acidification [52]. Although
clays are more stable to weathering than the primary minerals
from which they are derived, they too undergo weathering. In
tropical soils, where temperature and precipitation are high,
and where decaying organic matter is plentiful, clays undergo
additional breakdown [28]. For example, kaolinite may
hydrolyse, forming gibbsite (Al,O3.3HO):

Al,Si,O5 (OH)4(S) -+ SHZO(D — A1203.3H20(5)
+ 2H4Si04(aq) (2.2)

Field and laboratory studies [53-57] have shown that clay
formation can significantly limit the extent and rate of pri-
mary mineral weathering and control elemental fluxes
[53,58]. There are primarily three ways in which the precipi-
tation of clays moderate dissolution rates of primary
minerals: (i) via control of the saturation state of primary min-
erals in natural waters; (ii) forming passivating coatings on
primary minerals restricting their reactive surface area; and
(iii) reducing the hydraulic conductivity of the soil and/or
creating preferential flow channels [57].

Another major factor in soil weathering is the presence of
the transition metals Fe and Mn and their related redox pro-
cesses [59]. In primary minerals, Fe and Mn mainly occur in
their reduced form, i.e. Fe(Il) and Mn(II). Their oxidation cre-
ates a charge imbalance which destabilizes the mineral lattice,
enabling weathering [28]. In addition, the acidity created by
oxidation in aqueous environments facilitates further mineral
breakdown (equation (2.3)).
2Fell ) +0.505() +3H0)) — 2FeOOH ) +4H(, (2.3)

The global organic carbon content of soils is roughly
three times more than that of atmospheric or terrestrial bio-
mass [60] and a small perturbation to this pool can have a

dramatic effect on atmospheric CO, concentrations [61,62]. n

Secondary minerals play a very large role in the stabilization
and retention of soil organic matter [63]. Secondary minerals
form micro- and macro-aggregates with organic matter
creating a physical barrier against attacking microbes
[64-69]. Soil organic matter can also become stabilized by
chemical or physicochemical binding with secondary min-
erals to form organomineral complexes [70,71]. Without
these protections, organic carbon would decompose and
mineralize, entering the atmosphere, and eventually result
in acidification of the oceans [72].

As such, soil pore water chemistry is fundamental to
enhanced weathering, while the ‘carrying capacity” of rain-
water, soil porewaters, and runoff may be constrained by
secondary mineral formation. For instance, table 1 considers
the metal cation concentration (Mg”* or Ca**) and dissolved
inorganic carbon (DIC) of a solution in equilibrium with a
range of primary and secondary minerals and 400 patm of
CO; (approximately the partial pressure of CO, in the atmos-
phere), and 50 000 patm of CO, (a typical partial pressure of
CO; in soil pore gases). The total alkalinity varies by over 8
orders of magnitude depending on what minerals are dissol-
ving or precipitating, and the partial pressure of CO,. An
effective enhanced weathering strategy may require spatial
removal on the order of 10’s tCO, ha™! yrf1 [5], which is ther-
modynamically possible for most silicate minerals at
50000 patm CO,, but only for a smaller selection of pri-
mary/secondary mineral pairs at 400 patm CO,. Thus, the
feasibility of enhanced weathering depends on the combined
influence of dissolving primarily minerals, the formation of
secondary minerals, and the partial pressure of CO,. These
determine the maximum possible flux of basic cations to
oceans via river transport and thus the transport of alkalinity
to the ocean.

Table 1 also highlights the limitations of using calcite, the
mineral in agricultural lime, within enhanced weathering strat-
egies. Here a spatial CO, draw-down of 0.1-1 tCO, ha™" is 1-2
orders of magnitude smaller than what might be possible with
silicate minerals. However, calcite may dissolve orders of magni-
tude faster than some silicate minerals, which may result in
lower processing requirements and potentially cheaper removal
costs. Its effectiveness as a CO, removal technology may be con-
strained if the intention is large CO, removal over a definite land
area. However, it still may be possible to dissolve carbonate min-
erals within engineered systems where the produced alkaline
solutions are added to the ocean [74].

Agricultural activities can substantially enhance mineral
weathering and the flux of alkalinity to the oceans. For
example, tillage exposes less-weathered minerals at depth
and brings them to the surface where weathering rates are
faster. Acidification resulting from application of fertilisers
may also enhance mineral dissolution [75-77]. Nitrification
of nitrogen-rich fertilisers can create nitric acid, HNO;,
which reacts with minerals (equation (2.4)) at rates exceeding
that of natural carbonic acid.

2KAISi3Og() + 9H20q) + 2HNO3g)

— AleizO5(OH)4(s) + 4H4SiO4(aq) + 2K(+aq)

+2NO5 ) (24)

However, the role of nitrification in mediating weathering has
previously been thought not to result in sequestration of
atmospheric CO,, and in the case of carbonate weathering



Table 1. Resulting (a) total dissolved inorganic carbon and (b) total alkalinity from geochemical equilibrium between primary dissolving minerals (rows) and
secondary precipitating minerals (columns). (c) The conversion of DIC to spatial flux assuming 500 mm rainfall. Calculated using PHREEQC [73] and the
LLNL.dat database file (apart from gehlenite, which was calculated using minteg.dat file).

400 patm 50,000 patm

B >

L L

< o < g

cldlslleldls
a) total dissolved inorganic carbon
no primary mmol/kg
calcite .I 0.01
forsterite .| 0.10
wollastonite - || 1.00
diopside || 10.000
hedenbergite || 100.000
enstatite || 1000.000
anorthite 10000.000
albite L 100000.000
gehlenite
b) total alkalinity
no primary pEq/kg
calcite .I 10"
forsterite L
wollastonite - 10"
diopside L
hedenbergite |10
enstatite .
anorthite |10
albite
gehlenite .I 10°
c) spatial CO, removal (per 500 mm rainfall)
no primary tCO,/ha
calcite I 0.003
forsterite || 0.02
wollastonite - . |01
diopside 1
hedenbergite |6
enstatite L |37
anorthite || 240
albite 1500
gehlenite 10000

could promote CO, emission [75,77-79]. Similarly, sulphur
deposition (e.g. dissolved into rainwater), water acidification
through oxidation of sulphur-bearing minerals (e.g. acid
mine drainage), could promote weathering while resulting
in the emission of CO, [80].

Research on natural and enhanced weathering suggests
that soils have an important influence on the generation of
alkalinity which is ultimately transported to the oceans.

This alkalinity influences the oceanic carbon cycle and the
ability of the oceans to take up CO..

3. The ocean carbon cycle and acidification

The ocean is the largest carbon pool at the Earth’s surface
containing approximately 40 000 GtC. This includes organic
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Figure 1. The global ocean carbonate cycle. Adapted from Andersson and Sabine & Tanhua [6,82]. Arrows represent fluxes in Gt C per year (red arrows denote
remineralization). C; represents the dissolved inorganic carbon pools in Gt C. PIC, particulate inorganic carbon.

carbon contained within living biomass (3 GtC) and dis-
solved organic carbon (700 GtC). Molecules within the
carbonate system, namely aqueous carbon dioxide (COx.q)),
bicarbonate ions (HCO;~) and carbonate ions (CO3>") com-
prise the majority of oceanic carbon, of which
approximately 920 GtC resides in surface waters and 37 200
GtC in the deep ocean [81]. Figure 1 presents a schematic
of the oceanic inorganic ‘carbonate’ cycle, in which all 850
Gt of atmospheric C is cycled through DIC (Cy in figure 1)
within a decade. Marine autotrophic organisms consume
DIC to produce biomass, but some calcifiers (e.g. corals, coc-
colithophores) also use this carbon to form mineral carbonate
shells [83], which ultimately becomes particulate inorganic
carbon (PIC). Note that unlike autotrophy, carbonate shell
formation consumes ocean alkalinity and generates CO,/
acid (reverse of equation (1.1). Much of the PIC is reminera-
lized back into CO,, HCO;~ and CO;>~ as it sinks into
corrosive deeper waters (or through biological mediated
weathering in the surface ocean) with only a minor amount
(approx. 0.3 GtC yr") reaching the ocean floor and being per-
manently removed as sediment [6].

The ease by which organisms create mineral carbonate
shells is related to the product of the activity of the dis-
solved constituents (here Ca** and CO3>7) normalized to
mineral solubility (equation (3.1), [84,85]). The activity of
calcium in seawater is relatively stable. However, CO5*~
ions are in dynamic equilibrium with CO, in seawater,
such that its activity is reduced by elevated aqueous CO,
(equation (3.2)).

aCa®*" - aCO%~

0=
Ksp

(3.1)

and

CO; ag + HHO =HCO;™ + H" =COs*>" +2H". (3.2)

The ocean has absorbed nearly 40% of anthropogenic CO,
emissions since the industrial revolution [86], and sub-
sequently depressed the saturation state of the carbonate
mineral aragonite (CaCOj) (referred to as ‘ocean acidification’
[84]). This process can be represented by equation (3.3), in
which CO5>” ions are consumed through reaction with CO,
to produce HCO;™ (thus decreasing (2). This places stress
on marine calcifying organisms, some of which are sensi-
tive to these changes [87,88] and additional acidification
caused by contemporary and future emissions may have
severe impacts on some ecosystems. Taylor et al. [89]
suggest that an enhanced weathering scheme may be
able to counteract the changes caused by saturation state
through a globally deployed enhanced weathering
scheme. However, the protection offered to calcifying
organisms may be geographically limited to regions in
which enhanced weathering is deployed.
CO, +CO3*” = 2HCO;". (3.3)

Research over the last 20 years to understand the impact
of ocean acidification [84] has produced variable results
[90,91]. Species that can maintain calcium carbonate satur-
ation levels in their internal calcifying sites may be less
affected by changes in seawater pH. However, elevated CO,
will force calcifying organisms to expend a greater amount
of energy in shell building, which could have the largest
impact on sensitive organisms/ecosystems (e.g. some corals
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[92,93]), and some marine environments may dip below safe
calcium carbonate saturation levels by mid-century [94].

By reacting away aqueous CO, (equation (3.3)) additional
CO; can be removed from the atmosphere. This buffering
capacity was formalised by Revelle & Suess [95], into what
has subsequently been termed the ‘Revelle Factor’ (RE
equation (3.4)).

_ 9In[CO;]

RF= SmpIic (3.4)

where the partial differentials denote that other state vari-
ables (e.g. total alkalinity) are held constant. RF describes
the respective change of DIC with changes in atmospheric
pCO,. A larger RF equates to a reduction in oceanic buffering
capacity. Figure 2 shows a projection of RF under an RCP6.0
type emissions scenario, in which current oceanic values have
already diverted from preindustrial and will continue to
increase over the coming century, equating to a reduction in
the buffering capacity by approximately 34% between 2000
and 2100 [98].

Figure 2 also shows that it may be possible to maintain an
RF value of the surface ocean if all anthropogenic CO, emis-
sions were mitigated by increasing ocean alkalinity (e.g.
through mineral weathering). Initially, when alkalinity is
increased it will not be equilibrated with atmospheric CO,
(figure 2, white line) and the RF would be reduced. Following
the equilibration with CO,, the RF value would be main-
tained for a given emission. While mitigating all
anthropogenic emissions by increasing ocean alkalinity is
unlikely to be technically possible or desirable, this hypothe-
tical exercise illustrates that enhanced weathering may also
help to maintain the CO, buffering capacity of the ocean.

As in the case of the re-precipitation of carbonate minerals
via marine calcification, the ‘reverse weathering’ of silicate
minerals in seawater can also occur. This involves the combi-
nation of dissolved metal anions, silicic acid, aluminium

hydroxide and bicarbonate, to precipitate cation-poor clay
minerals and generate CO,, which may be released to the
atmosphere. Such reactions play an important role in control-
ling the global geochemical balance [99]. They remove
alkalinity from the ocean and control the partitioning of
COs; in the ocean atmosphere system. For example, the for-
mation of saponite, Cag5Nag1MgssFegsSizAlO;0(OH),
(equation (3.5)):

0.15Ca** 4+ 0.1Na* 4 2.5Mg™ + 0.8Fe* 4 3H,SiO,
+ AI(OH); + 7HCO;~
— Ca0A15Na0‘1Mg2_5FeOAgSi3AIOm(OH)z +7CO,

+ 10H,O. (3.5)
The source of Si may also be biogenic opal and the source of
Al may be ‘degraded clays’ [100]. Reverse weathering reac-
tions can also involve reactions with solids, e.g. FeOOH-
rich coatings on substrate grains [100]. Reactions such as
the one in equation (3.5) primarily occur in marine and del-
taic environments. For example, in situ clay formation has
been observed in the Amazon and Mississippi river deltas
[53]. However, it has also been found to occur in the
closed-basin lakes of Ethiopia [101]. The extent to which
reverse weathering occurs at hydrothermal vents is subject
to debate [102-104].

Michalopolous & Aller [53] determined that reverse weather-
ing reactions in Amazon shelf sediments could consume as much
as 10% of the continental riverine K™ flux. However, the true
extent of reverse weathering is difficult to quantity due to the
small quantities of clays formed in addition to interference from
terrestrially derived clays [100]. Thus, the process is poorly under-
stood, and its contribution remains uncertain [105]. A range of
clay minerals are formed in marine environments, including
greenalite, minnesotaite, palygorskite, montmorillonite, glauco-
nite, berthierine, chamosite, clinochlore, sudoite, odenite and
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corrensite. Of these, only greenalite and minnesotaite are thought
to be formed exclusively in marine environments and may be
used to help distinguish between marine and terrestrial sources
[105]. Better understanding of reverse weathering has been
made possible using isotope tracking, particularly K [106], Li
[107], and more recently Be [108].

Although formation of clays via reverse weathering is
thermodynamically favoured, they may be spatially and kine-
tically constrained owing to a silica limitation [105]. Indeed, it
is postulated that the late ecological rise of siliceous organ-
isms and the resulting decline in silica-rich conditions
inhibited the rate of reverse silicate mineral weathering, caus-
ing higher ocean alkalinity and lower atmospheric CO, levels
[105]. This silica limitation on reverse weathering has been
observed in experiments in the Amazon delta [53]. On the
other hand, supply of Al and/or Fe were kinetic limiters in
clay formation in the Mississippi delta [109]. Reverse weath-
ering reactions generate CO, and consume seawater
alkalinity. As such, the relative rates of these processes
could affect the efficacy of using ocean alkalinity enhance-
ment as an atmospheric CO, management strategy and as a
way of helping chemically counter ocean acidification [110].
For instance, saponite formation has been reported during
olivine dissolution experiments in a laboratory shaker [111]
and vermiculite and saponite were observed in flume weath-
ering studies [112]. Formation of these clays reduces the
efficiency of ocean alkalinity enhancement, e.g. coastal
enhanced weathering of olivine which aims to sequester
CO; as bicarbonate in the ocean [113].

Sustainable Development Goal 14 aims to ‘conserve and sus-
tainably use the oceans, sea and marine resources for
sustainable development’, with a target to ‘minimize and
address the impacts of ocean acidification, including through
enhanced scientific cooperation at all levels’. The most effec-
tive approach to prevent impacts of ocean warming,
acidification and sea level rise on SDG 14 is to stabilize if
not reduce atmospheric CO, concentrations by quickly
moving to net-zero CO, emissions. This requires both a

1. Berner RA, Kothavala Z. 2001 Geocarb IlI: a revised

redoubled effort to dramatically reduce CO, emissions as
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